Autonomic Networking and Virtualization

Application to the wireless Internet

Guy Pujolle

Guy.Pujolle@lip6.fr

Stone Age	Bronze Age	Iron Age
2,5 M years	8000 years	3000 years
Printing		
Stone Age	Bronze Age	Iron Age
1440	1850	1930
Internet		
Stone Age	Bronze Age	Iron Age
1970	2010	2025

Evolution of Networks

Internet

Protocol

Wireless Internet

Wireless Internet

Autonomic Networks

Complexity

- Networks keep moving towards ever increasing complexity
- New services added every week!
 - New technologies added every month!
 - New architectures introduced every year!
 - Combining the old with the new (no replacement!)

Complexity

• Where are "ever increasingly complex" networks heading?

- Something needs to be done ...
- Open systems people need to do something ...

 Solution: introduce an autonomic behavior to provide an automatic configuration.

Autonomic networking

Increased responsiveness

Adapt to dynamically changing environments

Business resiliency

Discover, diagnose, and act to prevent disruption

Self-configuring	Self healing
Self optimizing	Self protecting

Operational efficiency

Tune resources and balance workloads to maximize use of IT resources Secure information and resources Anticipate, detect, identify, and protect against attacks

A new plane

Knowledge plane

Situated view on the network

Configuration plane

- An intelligence is needed to pilot the network
- Configure the control algorithms

Information plane

Proposed in IEEE 802.21

Governing plane

ACF (Autonomic Communication Forum)

Piloting plane

Ginkgo Networks

A new plane: ACF

The knowledge plane

A new plane: Ginkgo Networks

New architecture

New architecture

15

Without a Piloting Plane

Today

Tomorrow

Autonomic architecture

Knowledge: Situated view

Global knowledge

Situated knowledge

Each Agent has its own Situated View of the Network.

Knowledge: Virtual situated view

Piloting architecture

Implementation

• Tool

Distributed intelligent agent system

Testbed

- Routing
- DiffServ Configuration
- Home Networking
- Wireless Internet

Piloting plane (Ginkgo Networks)

Ginkgo Networks Agent

OSPF + situated view

Measurement results

Global throughput with OSPF

Network of 50 nodes (8 hops maximum)

DiffServ configuration

DiffServ Configuration

DiffServ configuration

DiffServ configuration in dynamic environment

Autonomic Home Networking
Autonomic Home Networking

Autonomic home networking

- Develop a piloting plane distributed on each machine.
- Machines must support an operating system and be dependent on the home manager
 - Internet-Box
 - Bridge
 - Access Point
 - Mobile terminal equipment
 - Set-top-box
 - PC?

Autonomic home networking

Networks

Ethernet

PLC (Power Line Communication)

Wireless

UWB

🔶 Wi-Fi

Sensor networks

• Control of the quality of service and security

Situated view: one hop

Virtualization

Virtual servers

Geni

- Intel would like to propose a generic router
- Intel proposes to have a generic hardware with virtual network operating system
- A router with IOS release n and Junos and Alcatel OS and Nortel OS, etc.
- Cisco reaction is to virtualize the different releases of IOS.

Virtual router

Why virtualization?

- A better use of the resources
- Sharing of the resources for the routing schemes
- Security of the machines against attacks
- Isolation of the traffic in the virtual machines

- Management and control
- Need an hypervisor
- How to move the virtual entities (router, etc.)

Virtualization

Virtualization of the machines

Classical

Virtualization of the Network OS

Virtualization of the planes and the protocols

- Knowledge plane: virtual knowledge agents
- Piloting plane: virtual piloting agents (software)
- Control plane: virtual algorithms
- Data plane: virtual protocols

Virtualization of the services

Classical (data center, centrex, etc.)

Virtualization of the Knowledge Plane

Virtualization of the Management Plane

NM	NM	NM	NM	NM
System	System	System	System	System
1	2	3	4	5
Hypervisor				

Virtualization of the protocols

Virtualization of protocol stacks

Piloting the Wireless Internet

Wireless Internet

Ultra Wide Band

UWB

CAPWAP

Control And Provisionning of Wireless Access Point

Three types of Wi-Fi architecture

- Autonomous WLAN Architecture
- Centralized WLAN Architecture
- Distributed WLAN Architecture

Wi-Fi

MIMO - Multiplexing (TrueMIMOTM)

- Transmission speed = f(Nb_{antenne})
- Diversity

IEEE 802.11s Mesh networks

WiMAX

Alcatel source

WiMAX performance

- Point to multipoint
- 50 km at 70 Mbps in theory
- 10 km with 30 Mbps

Wi	Ma	AX	2	00	4	F	ra	m	es						
DL Preamble	DL Preamble	Ę	User 1 DL		User 2 DL		User 3 DL		UL Preamble	User 1 UL	UL Preamble	User 2 UL	UL Preamble	User 3 UL	Alcatel source
															75

Frame IEEE 802.16e – WiMax Mobile

WiMAX classes

Services	Definition	Application	Bandwidth Stealing	QoS Parameters	
Unsolicited Grant Service (UGS)	Real-time data streams comprising fixed- size data packets at periodic intervals.	T1/E1, Voice	Not Allowed	Maximum Sustained Traffic Rate–Minimum Reserved Traffic Rate, Maximum Latency Tolerated Jitter Request/Transmission Policy	
real time Packet Service (rtPS)	Real-time data streams consisting of variable-sized data packets that are issued at periodic intervals.	MPEG, Video	Allowed	Minimum Reserved Traffic Rate Maximum Sustained Traffic Rate, Maximum Latency Traffic Priority Request/Transmission Policy	
non real time Packet Service (nrtPS)	Delay-tolerant data streams consisting of variable-sized data packets for which minimum data rate is required.	FTP	Allowed	Minimum Reserved Traffic Rate Maximum Sustained Traffic Rate, Traffic priority Request/Transmission Policy	
Best Effort (BE)	Data streams for which no data minimum service level is required.	HTTP	Allowed	Maximum Sustained Traffic Rate Traffic Priority Request/Transmission Policy	
enhanced real time Packet Service (ertPS)	Real-time service flows that generate variable-sized data packets on a periodic basis.	VolP with silence suppression	Allowed	Maximum Sustained Traffic Rate Minimum Reserved Traffic Maximum Latency Request/Transmission Policy	

Alcatel source

WiMAX mobile - IEEE 802.16e

Specification for the WiMAX mobile

- Frequency < 3.5 GHz
- Data: 1 to 4 Mbps per user
- Speed up to 130 km/h
- Large cell (approximately 1 km)
- Ambient network
- QoS Garanty
- Security with EAP-TLS smartcard

IEEE 802.16e WiMax Mobile

Mobile Device Categories

- Notebooks / Tablet PCs
- Information (Internet) Appliances
- Personal Digital Assistants / Handhelds
- Smart Phones
- Pagers / Two-way Messaging Devices
- Phones

Architecture IEEE 802.16e vs 3GPP2

Centrino

• IEEE 802.16-2004

Intel products

- Rosedale
- Centrino 3
- Centrino 4
- Centrino 5
- Centrino multihome

WiRAN: 802.22

Band: 300 MHz within the 54 – 862 MHz television band

Cognitive radio

Free license

• Channel: 6 or 8 MHz

- Throughput : 18 Mbps for a 6 MHz channel
- User speed from the antenna: 1,5 Mbps to 4 Mbps
- User speed from the terminal: 384 kbps but may be 64 kbps
- Power: 1 W antenna, 100 mW terminal
- Transmission technique
 - OFDM
- QoS support at the MAC layer
- Very low price

IEEE 802.22

- The terminal has not to be declared (free license)
- Radio characteristics are controlled by the sender
- GPS/Galileo to determine the frequency to be used
- Range: 50 kilometers

- Bandwidth: 300 MHz
- With a cognitive frequency choice:
 - telephone+ data 100 000 clients
 - only telephony 1 000 000 clients

Wireless Internet

Wireless Internet

Performance analysis

Parameters

• VoIP traffic

G711 codec

Bit Rate (Mbps)	11	5.5	2	1
Throughput (Kbps)	1600	1450	1120	800
# of connections	10	9	7	5

Wi-Fi – IEEE 802.11b

Rate dependant on the position

OPNET

- A call every 10 seconds up to a maximum number n
- 5 < n <35
- When a call is rejected a new call arrives after the time-out
- When a call is finishing after 100 seconds, a new call is entering at a random point

Proportion of rejected calls

91

End-to-end delay

Conclusion

Autonomic networks

Piloting plane

Virtualization

Passage to a new age